Tuesday, February 7, 2017

kriteria dan algoritma penjadwalan cpu sistem operasi linux

Advertisement

Kriteria Penjadwalan CPU OS Linux

Algoritma penjadwalan CPU yang berbeda akan memiliki perbedaan properti. Untuk memilih algoritma ini harus dipertimbangkan dulu properti-properti algoritma tersebut. Ada beberapa kriteria yang digunakan untuk melakukan pembandingan algoritma penjadwalan CPU, antara lain:

1.CPU utilization. Diharapkan agar CPU selalu dalam keadaan sibuk. Utilitas CPU dinyatakan dalam bentuk prosen yaitu 0-100%. Namun dalam kenyataannya hanya berkisar antara 40-90%.
2. Throughput. Adalah banyaknya proses yang selesai dikerjakan dalam satu satuan waktu.
3. Turnaround time. Banyaknya waktu yang diperlukan untuk mengeksekusi proses, dari mulai menunggu untuk meminta tempat di memori utama, menunggu di ready queue, eksekusi oleh CPU, dan mengerjakan I/O.
4. Waiting time. Waktu yang diperlukan oleh suatu proses untuk menunggu di
ready queue. Waiting time ini tidak mempengaruhi eksekusi proses dan penggunaan I/O.
5. Response time. Waktu yang dibutuhkan oleh suatu proses dari minta dilayani hingga ada respon pertama yang menanggapi permintaan tersebut.
6. Fairness. Meyakinkan bahwa tiap-tiap proses akan mendapatkan pembagian waktupenggunaan CPU secara terbuka (fair).

Dispathcer

Dispatcher adalah suatu modul yang akan memberikan kontrol pada CPU terhadap penyeleksian proses yang dilakukan selama short-term scheduling. Fungsi-fungsi yang terkandung di dalamnya meliputi:
a. Switching context;
b. Switching ke user-mode;
c. Melompat ke lokasi tertentu pada user program untuk memulai program. 
Waktu yang diperlukan oleh dispatcher untuk menghentikan suatu proses dan memulai untuk menjalankan proses yang lainnya disebut dispatch latency.

Algoritma Penjadwalan
Proses memerlukan prosesor dan penjadwalan pemakaian prosesor. Berdasarkan berbagai ketentuan pada penjadwalan proses serentak,
dapat disusun teknik penjadwalan prosesor. Dapat dipandang semua proses serentak itu sebagai satu kumpulan proses yang memerlukan prosesor.
Penjadwalan proses didasarkan pada sistem operasi yang menggunakan Prinsip Multiprogramming. Dengan cara mengalihkan kerja CPU untuk beberapa proses, maka CPU akan semakin produktif.

Algoritma diperlukan untuk mengatur giliran proses-proses yang ada di ready queue yang mengantri untuk dialokasikan ke CPU. Beberapa algoritma penjadwalan dijelaskan sebagai berikut :

First Come First Served (FCFS) Scheduling

 FCFS merupakan algoritma penjadwalan yang paling sederhana yang digunakan dalam CPU. Dengan menggunakan algoritma ini setiap proses yang berada pada status ready dimasukkan kedalam FIFO queue atau antrian dengan prinsip first in first out, sesuai dengan waktu kedatangannya. Proses yang tiba terlebih dahulu yang akan dieksekusi.
Kelemahan dari algoritma ini:
  • Waiting time rata-ratanya cukup lama.
  • Terjadinya convoy effect, yaitu proses-proses menunggu lama untuk menunggu

1 proses besar yang sedang dieksekusi oleh CPU. Algoritma ini juga menerapkan konsep non-preemptive, yaitu setiap proses yang sedang dieksekusi oleh CPU tidak dapat di-interrupt oleh proses yang lain. Pada algoritma ini, maka proses yang pertama kali meminta jatah waktu untuk menggunakan CPU akan dilayani terlebih dahulu. Pada skema ini, proses yang meminta CPU pertama kali akan dialokasikan ke CPU pertama kali.
Misalnya terdapat tiga proses yang dapat dengan urutan P1, P2, dan P3 dengan waktu CPU-burst dalam milidetik yang diberikan sebagai berikut :


Gant chart dengan penjadwalan FCFS dapat digambarkan sebagai berikut :


Waktu tunggu untuk P1 adalah 0, P2 adalah 24 dan P3 adalah 27 sehingga rata- rata waktu tunggu adalah (0 + 24 + 27)/3 = 17 milidetik. Apabila urutannya P2, P3 dan P1 dengan waktu CPU-burst dalam milidetik yang diberikan sebagai berikut :



Maka Gant chart-nya dengan penjadwalan FCFS digambarkan sebagai berikut :



Waktu tunggu untuk P1 adalah 6, P2 adalah 0 dan P3 adalah 3 sehingga rata- rata waktu tunggu adalah (6 + 0 + 3)/3 = 3 milidetik. Rata-rata waktu untuk kasus ini jauh lebih baik jika dibandingkan dengan kasus sebelumnya. Algoritma FCFS termasuk non-preemptive, karena sekali CPU dialokasikan pada suatu proses, maka proses tersebut tetap akan memakai CPU sampai proses tersebut melepaskannya (berhenti atau meminta I/O).

Shortest Job First (SJF) Scheduling Pada algoritma ini setiap proses yang ada di ready queue akan dieksekusi berdasarkan burst time terkecil. Hal ini mengakibatkan waiting time yang pendek untuk setiap proses dan karena hal tersebut maka waiting time rata-ratanya juga menjadi pendek.
Ada beberapa kekurangan dari algoritma ini yaitu:

  • Susahnya untuk memprediksi burst time proses yang akan dieksekusi selanjutnya.
  • Proses yang mempunyai burst time yang besar akan memiliki waiting time yang besar pula SJF (Shortest Job First) karena yang dieksekusi terlebih dahulu adalah proses dengan burst time yang lebih kecil.

Algoritma ini dapat dibagi menjadi dua bagian yaitu :

  • Preemptive. Jika ada proses yang sedang dieksekusi oleh CPU dan terdapat proses di ready queue dengan burst time yang lebih kecil daripada proses yang sedang dieksekusi tersebut, maka proses yang sedang dieksekusi oleh CPU akan digantikan oleh proses yang berada di ready queue tersebut. Preemptive SJF sering disebut juga Shortest-Remaining- Time-First scheduling.
  • Non-preemptive. CPU tidak memperbolehkan proses yang ada di ready queue untuk menggeser proses yang sedang dieksekusi oleh CPU meskipun proses yang baru tersebut mempunyai burst time yang lebih kecil.


Priority Scheduling
Priority Scheduling merupakan algoritma penjadwalan yang mendahulukan proses yang memiliki prioritas tertinggi. Setiap proses memiliki prioritasnya masing-masing. Prioritas suatu proses dapat ditentukan melalui beberapa karakteristik antara lain:

  • Time limit.
  • Memory requirement.
  • Akses file.
  • Perbandingan antara I/O burst dengan CPU burst.
  • Tingkat kepentingan proses.


Pada algoritma ini terdapat 2 macam penjadwalan, yaitu :


  • Preemptive. Jika ada suatu proses yang baru datang memiliki prioritas yang lebih tinggi daripada proses yang sedang dijalankan, maka proses yang sedang berjalan tersebut dihentikan, lalu CPU dialihkan untuk proses yang baru datang tersebut.


  • Nonpreemtive. Proses yang baru datang tidak dapat menganggu proses yang sedang berjalan, tetapi hanya diletakkan di depan queue. Kelemahan pada priority scheduling adalah dapat terjadinya indefinite blockin (starvation). Solusi dari permasalahan ini adalah aging, yaitu meningkatkan prioritas dari setiap proses yang menunggu dalam queue secara bertahap.


Round Robin Scheduling

Algoritma ini menggilir proses yang ada di antrian. Setiap proses mendapat jatah sebesar time quantum. Jika time quantum-nya habis atau proses sudah selesai, CPU akan dialokasikan ke proses berikutnya. Semua proses mendapat jatah waktu yang sama dari CPU yaitu (1/n), dan tak akan menunggu lebih lama dari (n-1)q dengan q adalah lama 1 quantum. Jika q terlalu besar maka akan sama dengan algoritma FCFS. Jika terlalu kecil, akan semakin banyak peralihan proses sehingga banyak waktu terbuang.


Gambar 5 - Urutan kejadian algoritma round robin

Konsep dasar dari algoritma ini adalah dengan menggunakan time- sharing. Pada dasarnya algoritma ini sama dengan FCFS, hanya saja bersifat preemptive. Setiap proses mendapatkan waktu CPU yang disebut dengan waktu quantum (quantum time) untuk membatasi waktu proses, biasanya 1-100 milidetik. Setelah waktu habis, proses ditunda dan ditambahkan pada ready queue.
Jika suatu proses memiliki CPU burst lebih kecil dibandingkan dengan waktu quantum, maka proses tersebut akan melepaskan CPU jika telah selesai bekerja, sehingga CPU dapat segera digunakan oleh proses selanjutnya. 
Sebaliknya, jika suatu proses memiliki CPU burst yang lebih besar dibandingkan dengan waktu quantum, maka proses tersebut akan dihentikan sementara jika sudah mencapai waktu quantum, dan selanjutnya mengantri kembali pada posisi ekor dari ready queue, CPU kemudian menjalankan proses berikutnya.Jika terdapat n proses pada ready queue dan waktu quantum q, maka setiap proses mendapatkan 1/n dari waktu CPU paling banyak q unit waktu pada sekali penjadwalan CPU. Tidak ada proses yang menunggu lebih dari (n-1)q unit waktu. 
Performansi algoritma round robin dapat dijelaskan sebagai berikut, jika q besar, maka yang digunakan adalah algoritma FIFO, tetapi jika q kecil maka sering terjadi context switch. Misalkan ada 3 proses: P1, P2, dan P3 yang meminta pelayanan CPU dengan quantum-time sebesar 4 milidetik, maka dapat digambarkan sebagai berikut :



Maka Gant chart-nya dapat digambarkan sebagai berikut :



Waktu tunggu untuk P1 adalah 6, P2 adalah 4, dan P3 adalah 7 sehingga rata-rata waktu tunggu adalah (6 + 4 + 7)/3 = 5.66 milidetik. Algoritma Round-Robin ini di satu sisi memiliki keuntungan, yaitu adanya keseragaman waktu. Namun di sisi lain, algoritma ini akan terlalu sering melakukan switching seperti yang terlihat pada Gambar 3.4. Semakin besar quantum-timenya maka switching yang terjadi akan semakin sedikit.


Gambar 8 - Waktu quantum yang lebih kecil meningkatkan context switch

Pada multiprogramming, selalu akan terjadi beberapa proses berjalan dalam suatu waktu. Sedangkan pada uniprogramming hal ini tidak akan terjadi, karena hanya ada satu proses yang berjalan pada saat tertentu. Konsep dasar dari multiprogramming ini adalah: suatu proses akan menggunakan CPU sampai proses tersebut dalam status wait (misalnya meminta I/O) atau selesai. Pada saat wait , maka CPU akan nganggur (idle). Untuk mengatasi hal ini, maka CPU dialihkan ke proses lain pada saat suatu proses sedang dalam wait, demikian seterusnya.

Artikel Terkait

Silahkan berkomentar dengan sopan sesuai topik yang dibahas. Mohon tidak meninggalkan URL. Silahkan berkomentar dengan sopan serta sesuai topik dan dimohon untuk tidak meninggalkan link aktif.

Terima Kasih.

EmoticonEmoticon